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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURE DISTRIBUTION AT LOW SPEED ON A MODEL
INCORPORATING A W WING WITH ASPECT RATIO 6,
45° SWEEP, TAPER RATIO 0.6, AND AN
NACA 65A009 AIRFOIL SECTION

By Edward C. Polhamus and Albert G. Few, Jr.
SUMMARY

This paper contains results of pressure-distribution measurements
et low speed on a wing-fuselage cambination having a wing of W plan form
with aspect ratio 6, 45° sweep, taper ratio 0.6, and an NACA 65A009 air-
foll section placed perallel to the plane of symmetry. The test
Reynolds numbers ranged from 1,190,000 to 1,580,000.

The chordwise pressure distributions, which were determined at
varlous spanwise stations, indicate that a vortex type of flow exists
over the wing at moderate end high angles of attack. The strength and
location of this vortex were appreciably affected by changing the angle
of sideslip, The experimental chordwise and spanwise load distributions
at an angle of attack of 2.3° were in fair agreement with theory except
near the wing Juncture, where there appears to be a mixing and shedding
of the boundary layer from the inboard and outboard wing panels. Wake
surveys at the Juncture indicate a rather large increase in total pres-
sure loss at moderate to high angles of attack.

INTRODUCTION

Composite-plan-form wings made up of sweptback and sweptforward
panels have been proposed to alleviate the low-speed stablility problems
assoclated with sweptback wings. An Investigation made at low speed
(ref. 1) indicated that such alleviation was obtained by the use of M
and W wings. In a later investigation (ref. 2) it was found that the
large unstable shift of the aerodynamic center associated with a 9-percent-
thick swept wing in the transonic range was eliminated by the use of an
M or W plan form and that, although the drag at zero lift was higher in
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the transonic range than for & stralight sweptback wing, a fairly large
portion of the sweep effect was realized. Recently, 1t has been pointed
out that M and W wings may have an additional advantage over conventional
sweptback wings in that the wings of composite plan form should have
smaller spanwisgse twist under sir loed.

The present paper presents the results of low-speed pressure-
distribution measurements of a wing-fuselage configuration incorporating
a wing of W plan form. The wing-fuselage combination used for this
investlgation was the same as that used in an investigation of the low-
speed aerodynamic characteristics of a complete airplsne configuration
employing a W wing reported in reference 3. The present investigation
also included wake surveys at several angles of attack for various span-
wise positions. Stall patterns obtained from tuft studies om the wing
for several angles of attack are also presented.

SYMBOLS

The system of axes employed together with an indication of the
positive forces, moments, and angles 18 presented in figure 1. All
pitching-moment coefficients are referred to the quarter-chord of the
mean serodynamic chord. The symbols used in this paper sre defined as
follows: '

CL -lift coefficient, Lift/qS

Cx longitudinal-force coefficlent, X/qS
Cn pitching-moment coefficient, M/qST
X longltudinal force along X-axis, 1b
M pitching moment about Y-axis, ft-1b

q free-stream dynamic pressure, pV2/2, 1b/sq £t
S wing area, Bq ft
o b/2
= wing mean aerodynamic chord, El/n cady, ft
o
Pl_P
)3 pressure coefficlent, —g
L



NACA RM L52F11 . e 3

av

2

R

ure 2.

local static pressure, lb/sq ft

free~-stream static pressure, lb/sq ft

mass density of air, slugs/cu ft

free-stream velocity, ft/sec

local wing chord, parallel to plane of symmetry, ft

average wing chord, parallel to plane of symmetry, It

angle of sideslip, positive when relative wind is from the
right, deg

angle of attack, measured parallel to plane of symmetry, deg

distance rearward of fuselage nose measured parallel tc plane
of symmetrxy, ft

distance behind local wing leading edge measured parallel to
plane of symmetry, ft

actual length of fuselage, ft
wing span, ft

spanwlse distance measured perpendicular to plane of gymmetry,
ft

section normal-force coefficlent
height above wing chord plane, ft
loss in total pressure, lb/sq ft

pressure-difference coefficient, Pupper - Piover

APPARATUS AND METHODS

A three-view drawing of the model as tested 1s presented as fig-
The wing had a W plan form of aspect ratio 6 with 45° sweep, a

taper ratio of 0.6, and an NACA 65A009 airfoll section placed parallel
to the plane of symmetry. The ordinates of the airfoil section are
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presented in figure 3. The fuselage had a fineness ratioc of 10,
achieved by cutting off the rear one-sixth of a fineness-ratio-12 body
of revolution, the ordinates of which are presented in figure 3. The
fuselage was constructed of wood and the wing was constructed of wood
cycle-welded to a steel spar.

Pressure orifices were installed in the wing at 13 chordwise posi~
tions for each of six spanwlse stations shown in figure L. In order to
reduce the number of orifices and menometer bosrds needed, orifices were
installed in only the upper surface of the wing and the model, which was
symmetrical, was tested at both poslitive and negative anglies of attack
in order to obtain data representative of both the upper and lower sur-
faces for the wing at posltive angles of attack. Pressure measurements
at the three inboard spanwise stations were made on the right wing while
those for the three outboard stations were measured on the left wing for
simplicity of 1lnstallation. Pressure orifices were also instelled in
the fuselage at 21 stations along each of three meridian lines as illus-
trated in figure 4. Figure 5 showe the model mounted on the center
support strut.

For use in wing wake surveys & rake consisting of a series of
total-pressure tubes extending over the entire wake at moderate angles
of attack was mounted at a distance equal to 0.806b/2 rearward of the
guarter-chord of the mean serodynamic chord.

TESTS

The pressure-dlistribution tests were made in the Langley 300 MPH
7- by l10-foot tunnel at a dynamic pressure of 39.96 pounds per square
foot which for average test conditions corresponds to a Mach number
of 0.1T7 and to a Reynolds number of 1,190,000 based on the mean aero-
dynamic wing chord. Force tests and wake surveys were mmde et a
dynamic pressure of T73.12 and Tl.ll pounds per square foot, respec-
tively, which for average test conditiocns corresponds to a Mach number
of about 0.22 and a Reynolds number of about 1,580,000. Several tests
vere made at a Reynolds number of about 1,580,000 and an angle of attack
of 2.3° in order to compare experimental and theoretical chordwise and
spanwise load distributions.

With the model at a given angle of attack, a record was taken of
the pressures at the orifices by photographing the multiple-tube manom-
eter to which the orifices were connected.
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CORRECTIONS

The angle of attack, drag, and pitching-moment deta have been
corrected for jet-boundary induced upwash on the basls of unswept wings
(ref. 4) and for the tares caused by the model support strut. Calcu-
lations have shown that the effects of sweep on these Jet-boundary
corrections are negligible. No attempt has been made to correct the
pressure data for the slight spanwise and chordwise variation of the
jet=boundary induced upwash. All coefficients have been corrected for
blocking by the model and its wake by the method of reference 5.
Tunnel-air-flow misalinement has bheen accounted for in the computation
of the test data.

RESULTS AND DISCUSSION

Presentation of Results

The results of this investigation are presented in the figures
tabulated below:

Title Figure
Aerodynamic characteristics of model . . « ¢« . ¢« v v ¢ « ¢« o « & & 6

Pressure distribution on wing:
Pressure distribution on wing .+ + & + ¢ ¢ v e s e s e .« . T tol2
Wake surveys, £ = 0° ... ... .. e & s s 4 e s e e e e s 13
Experimental and theoretical spanwise load distribution . . . . 1k
Experimental and theoretical chordwise load distribution . . . . i5
Effect of 81de@81liP +v v + ¢ « ¢« ¢ « « o o o o 2 s o s« o o o« « 16 to 17

Pressure distribution on fuselage:
Wing-fuselage combination, B =00 . . i i i i e e et e e e e 18
Fuselage alone, B = 00 L . e e e e e e e e e e e e e e e e 19
Aerodynamic section characteristics . . ¢« & ¢ & ¢ ¢ ¢ & & &+ o & @ 20

Stall patterns . « « o« ¢« ¢ ¢ ¢ ¢t e s s e e s e e 8 e & = 4w s 21

Aerodynamic Characteristics

The low-speed aerodynamic characteristics obtained for the wing-
fuselage cambination at zero angle of sideslip are presented in fig-
ure 6. All pitching-moment coefficients are referred to the quarter-
chord of the mean aerodynamic chord. While the data of figure 6 are
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included mainly for the purpose of correlation of the pressure data with
the force datas, there are a few interestimg points 1llustrated which
should be mentioned. It will be noted that the pitching-moment data
1llustrate the advantage of W wings with regard to stabllity inasmuch
a8 the pitching-moment curve 1s essentlally linear throughout the lift
range; vwhereas a sweptback wing having the same sweep and aspect ratio
would be expected to have a large unstable break at a 1lift coefficient
of about 0.50 and continuing to the stall (see ref. 6). It is also
interesting to note that for thils particular wing-fuselage combination
the lift-curve slope 1s In good agreement with the theoretical wing-
alone results calculated by the method of reference 7. The theoretical
lift-curve slope 1s 0.062 while the experimental wing-fuselage lift-
curve slope is 0.063. The theoretical wing-alone aerodynamic-center
location is at 31.4 percent of the mean aerodynamic chord, while the
experimental wing-fuselage aerodynamic-center location 1s at 31.0 per-
cent of the mean aerodynamic chord.

Pressure Distribution on the Wing

Wing pressure distribution and wake surveys, B = 0%°.- The chord-
wise pressure distributions at six semispan stations for various angles
of attack are presented in figures 7 to 12. Wake surveys at several
angles of attack are presented in figure 13 for wvarious spanwlise posi-
tions at a distance equal to 0.806b/2 rearward of the quarter~-chord of
the mean aerodynamic chord. The wake surveys are presented as plots of
total-pressure loss AH/q against height mbove wing chord plane z/c.
The chordwise pressure distributions st low angles of attack (figs. 7
and 8), in general, are normel. At an angle of attack of 8.6 (fig. 9),
there is an indication of a vortex-type flow over the Inboard panel of
the wing. This is reflected in the pressure distribution at the leading
edge of the 20- to S0-percent-semispan statione. This type of flow
phenomena has been reported in reference 8. Wake surveys in this region
(fig. 13) at a comparable angle of attack show large increases in total-
pressure loss, which is indicative of separation. At 8.6° angle of
attack there appears to be no vortex flow an the outboard panel. At
12.7° angle of attack (fig. 10), the vortex pattern on the inboard panel
has moved Iinboard and a second vortex appears to have formed on the out-
board panel. At the higher angles of attack the inboard psnel has
stalled and the ocutboard stall pattern progresses toward the tip. The
deley in the formation of the vortex on the outboard panel is probably
due to the fact that the effective angle of attack is comnsiderably less
on the outboard panel thsn on the inboard panel.

Experimental and thecretical spanwise load distribution.- A com-
parison of the experimental and theoretical spanwise load distributions
is presented in figure 1li. The experimental results are for an angle of
attack of 2.3° and the thecretical results were calculated by the method
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of reference 7. In genersl, the agreement 1s rather poor with the
experimental loading having a rather large dip at the midsemispan
station. However, the experimental loading does substantiate the

rather rapld load gradient from the midsemispan station out to the
wing tip.

Experimental and theoretical chordwise load distribution.- Com-
parisons between the experimental and thin-alrfoil-theory chordwise

load distributions(&P = halﬂigizé, where a; is the local effective
angle of attack expressed in radians, which was determined from the

theoretical spanwise load distribution) at an angle of attack of 2.3°

are presented in figure 15. The agreement at the two inboard snd two
outboard stations is fairly good. However, at the 50-percent-semlspan
and 60~percent-semispan stations the agreement is rather poor especially
at the 50-percent-semispan station where there appears to be a rather
large camber effect. This may be due to boundary-layer drainage fram
the inboard and outhoard panels with the boundary layer being thicker

on the upper surface of the wing.

Effects of sideslip.- The effects on the wing pressure distribution
of sideslipping the model are indicated in figures 16 and 17. In the
presentation of the data the sign of the sideslip angle has been reversed
for the three outboard stations so that figures 16 and 17 may be inter-
preted as though all pressures were measured on the right wing. Measure-
ments at negative sideslip angles yield results for the trailing wing,
and conversely, measurements at positive sideslip angles provide pres-
sure distributions on the leading wing. At angles of attack near zero
degrees (fig. 16), the effect of sideslip was to increase the magnitude
of the pressure coefficients on the sweptforward panel of the trailing
wing and the sweptback panel of the leading wing and to decrease those
on the other two panels. This effect is attributed to the change with
sideslip angle of the velocity components normal to the leading edge.

At an angle of attack of 6.5° (fig. 17), sideslipping the model had a
pronounced effect on the strength and location of the vortex near the
leading edge. At zero sideslip, a vortex type of flow on the inboard
panel was evidenced by broadened leading~edge pressure peaks and rapid
pressure recovery Just behind the peak. Thls vortex flow became slightly
stronger at negative sideslip angles and weaker at positive sideslip
angles. No evidence of this vortex flow exists on the ouiboard panel at
zero or high negative angles of sideslip; however, as the sideslip angle
increases positively, a vortex appears somewhat downstream from the
leading edge on the inboard end of the outboard panel.
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Pressure Distribution on the Fuselsage

Pressure distributions on the fuselsge 1n the presence of the wing
along each of three meridian lines, as illustrated in figure k4, are
given in figure 18, while the pressure distributions along these
meridian lines for fuselage alone are presented in figure 19. Figure 18
shows an increase in pressure along the three meridian lines near the
region of the wing-fuselage Juncture. This pressure rise 1s somevwhat
greater on the 15°C meridian line ard diminishes progressively as the
90° meridian line is approached, Indicating & pressure carry-over from
the wing. It can be seen from figures 18 and 19 that no significent
change occurs in the magnitude of the fuselage pressures except in the
immediate vicinity of the wing.

Aerodynemic Section Characteristics

The aerodynamic section normel-force characteristics at zero side-
slip for varlous spanwlse stationa are presented in figure 20. The
shgle of attack for maximum values of section normal-force coefficients
on the Inbcard panel decreases conslderably toward the Jjuncture, Indic-
ative of separation beginning first at the wing Juncture and progressing
inboard as the angle of attack 1s Increased. Little evidence of sepa-
ration exists on the outhoard panel except near the Juncture at the
60-percent-semispan station where the normal-force coefficient bresks at
about 10° angle of attack. At the lower angles of attsck the normal-
force curves for the varicus semispan statiomns are felrly linear. The
large increase In total-pressure loss In the wake at about an angle of
attack of 10° from the 35-percent-semispsn station to the 60-percent-
semispan station (fig. 13) would seem to substantiate the fact that
shedding and mixing of the boundary layer in this reglon results in flow

separation as Iindicated by the breaks 1ln the normel-force curves at these

semispan stations.

Stall Patterns

Stall patterns on the wing, as determined from tuft studies, at
various angles of attack are presented as figure 21. Separation at the
wing Juncture appears to begin at a low angle of attack and progresses
inboard more rapidly than it does ocutbcard from the regicn of the Junc-
ture. As has previously been pointed out, this could be attributed to
the fact that the effective angle of attack at the outboard panel is
less than that of the inboard panel. It can be seen that at moderate
to high angles of attack the arrows Indicate flow from both the inboard
and outboard wing panels In a direction toward the wing Juncture where
the boundary layer from both panels 1s mixed and shed off the wing -
resulting in the large increases in total-pressure loss as shown in

figure 13.
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CONCLUSIONS

Based on the results of pressure-distribution measurements at low
speed on a wing-fuselage configuration having a wing of W plan form
with aspect ratio 6, 45° sweep, taper ratio 0.6, and an NACA 65A009 air-
foil section parallel to the plane of symmetry, the following conclusilons
are drawn: )

1. A vortex type of flow exlsts over the wing at moderate and high
angles of attack as indicated by the pressure distribution. This vortex
first appears on the inboard panels and later forms on the ocutboard
panels as the angle of attack is increased.

2. At a given angle of attack, the strength and location of the
vortex are appreciably affected by changing the angle of sideslip.

3. Experimental and theoretlcal chordwise and spanwise load distri-
butions are in fair agreement except near the wing Juncture, where there
appears to be a mixing and shedding of the boundary layer from the
inboard and outboard wing panels.

4. Wake surveys in the region of the juncture indicate a rather
large increase in total-pressure loss at moderate to high angles of
attack, while the variations of the wake along the span st the lower
angles of attack are rather small except for slight increases in the
Juncture region.

Langley Aeronautical Laboratory
National Advisory Commlttee for Aercnautics
Langley Field, Va.
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Relative wind

Figure 1.- System of axes. Positive values of forces, moments, and
angles are indiceted by ,BTrTowS.
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